

1

How Pattern Enabled Development

 Contributes to Software Safety Engineering

Marvin Toll and William R. Minto

Abstract

Pattern Enabled Development® (PED) is an approach to software application

development intended for enabling business innovation and empowering project

teams. Software safety engineering, or “anzeneering” is the discipline of protecting

developers (and other constituencies) from hazardous code. We contend that the

PED Principles advancing software flexibility concurrently contribute to safe code.

PED: A BRIEF RETROSPECTIVE

In 2002, Java was adopted as the standard enterprise platform for in-house

application development at a large automotive manufacturing company. In subsequent

years, many applications would migrate from Perl/CGI to Java. Marvin Toll joined one

such co-located team in 2004 as a consultant to migrate a significant global dealer

application to the new platform.

Despite considerable Perl, CGI and (to a lesser degree) Smalltalk expertise and a

deep understanding of the business domain, the team was about to take on a technical

challenge without the correct skill set! A tight project timeline precluding formal Java

language training compounded the skills deficit.1 Fortunately, the team included capable

individuals that worked well together.

Could a novel approach compensate for the lack of requisite Java knowledge?

Would the desired business innovations succeed if the team committed to adopting

simple patterns prior to coding? If so, which ones? Would example pattern

implementations be effective for communicating to a developer audience without a Java

background? How much Test Driven Development (TDD) could a team absorb if they

1 Hiring new Java developers without relevant business domain expertise would not have improved

the situation.

2

had not learned the programming language? Would a pattern language foster team

confidence and a sense of empowerment?

A significant portion of the project’s success2 can be traced to what would later be

codified as Pattern Enabled Development® (PED). As Todd Hall, technical lead and

architect, reflects: “without patterns, the team would not have created a solution or an

application architecture that is still in use ten years later.”3 Thus launched the “PED

Journey,” a decade-long pursuit to validate, extend and refine lessons first learned from a

single project team.

WHAT IS “ANZENEERING?”

The term “anzeneering” was coined by Joshua Kerievsky, CEO of Industrial Logic, to

identify safety practices pertaining to software engineering akin to those used in

manufacturing and construction.4 In these two fields, firms like Alcoa have

demonstrated leadership with the introduction of practices and cultural norms that

protect workers. Why should software developers not be equipped for safety? “Anzen”

(Japanese for “safety”) is not meant metaphorically in the software context—the practices

recommended by anzen have measurable implications for protecting such things as

reputations, budgets, relationships, worker health, and market position.

Would a pattern centric development approach advancing software flexibility

concurrently contribute to “safe” code? That is, could an association between safe code

and software flexibility be nurtured in the form of a coding principle?

The opposite of safe code is hazardous code—software that is poorly designed,

highly complex, and deeply defective. For example, hazardous code might be developed

in an environment lacking even basic Agile practices like automated builds and

automated tests. In the following sections, we identify several of the hazards

encountered in enterprise application development, along with the corresponding PED

Principle providing protection, discussed in the context of why the principle emerged

during the “PED Journey.”

2 In this case, “success” meant an uninterrupted flow of delivered business value.
3 Todd Hall, private correspondence, June 30, 2014.
4 See Joshua Kerievsky, “Anzeneering,” retrieved from

http://www.industriallogic.com/blog/anzeneering/, June 19, 2014.

http://www.industriallogic.com/blog/anzeneering/

3

SOME HAZARDS AND THE PED PRINCIPLES PROVIDING

PROTECTION5

PED is based on a set of principles; the names within {curly braces} of the Principle

section are the names of the PED Principles.

1. Faux Flexibility

Hazard

To achieve software flexibility, a developer might have in mind a pattern that is

overly complex for its immediate purpose. Did the developer assume a relatively

complex pattern was needed for application extensibility? Joshua Kerievsky underscores

this risk:

… [over] time, the power of patterns led me to lose sight of simpler ways to

write code. After learning that there were two or three different ways to do a

calculation, I’d immediately race towards implementing the Strategy pattern,

when, in fact, a simple conditional expression would have been easier and

faster to program—a perfectly sufficient solution.6

Complexity can convey an illusory sense of flexible software, i.e., faux flexibility, where

the developer spends additional time on testing and implementation (tantamount to

over-engineering), with the imagined benefits never coming to fruition.

PED Journey

Todd Hall might well have said “without simple patterns, the team would not have

created a solution or an application architecture that is still in use ten years later.” While

this serendipitous discovery was made with a technically limited project team, we later

found that more seasoned developers benefit from the adoption of simple patterns. In

addition, we discovered that adopting simple patterns early during JUnit testing

contributed to sustaining flexibility. Our conclusion: to achieve genuine software

flexibility, a developer should begin with the simplest viable pattern for a given purpose.

5 See http://pedCentral.com for an articulation of the PED Principles. Throughout this paper, we

assume Java as the implementation language. It is tantalizing to suppose that these principles could apply

to other languages, however we have insufficient experience working with them to make the case.
6 Joshua Kerievsky, Refactoring to Patterns (Addison-Wesley, 2005), 2.

4

In recent years, we have observed that enthusiasm for the power of TDD has drawn

some towards embracing an ever-expanding number of test tools (e.g. Mockito) and an

increasing number of test instructions per functional (production) instruction. For some,

the tendency to over-engineer has migrated to test code.

Principle

{First Principle} In the beginning, when writing your first line of test code,

keep in mind a simple pattern. In the end, your customer will have more

flexible software.

“Simplicity can encourage flexibility.”7 “… [T]he flexibility of simplicity and

extensive tests is more effective than the flexibility offered by speculative design.”8 The

First Principle of PED presumes “software flexibility” is an attribute of computer

applications valued by business owners for contributing to business agility. We define

software flexibility as:

[t]he quality attribute of a working software application whereby changes to its

code base are introduced rapidly while preserving the overall functional

integrity of the application. Software flexibility is dependent upon a number of

other application attributes that ensures its resiliency. These include the ease

with which changes are understood, tested and debugged by the development

team. Software flexibility is prized where it is critical that the software be

quickly restored to a fully functional condition despite frequent iterations

throughout its maturation.9

There is an additional presumption behind the First Principle, that is, a commitment

to a “pattern first” mindset. Beck, writing in 2007, seems to affirm this commitment:

Once a set of implementation patterns has become habitual, I program faster

and with fewer distracting thoughts. When I began writing my first set of

implementation patterns (1996) I thought I was a proficient programmer. To

encourage myself to focus on patterns, I refused to type a character of code unless I

had first written down the pattern I was following.10 It was frustrating, like I was

coding with my fingers glued together. For the first week every minute of

coding was preceded by an hour of writing. The second week I found I had

most of the basic patterns in place and most of the time I was following existing

7 Kent Beck, Implementation Patterns (Addison-Wesley, 2007), 13.
8 Kent Beck, ibid., 12.
9 “What is PED?” Retrieved from http://pedCentral.com/what-is-ped/.
10 Italics added.

5

patterns. By the third week I was coding much faster than I had before,

because I had carefully looked at my own style and I wasn’t nagged by

doubts.11

2. Inconsistency

Hazard

Software lacking consistency may function properly, but grows increasing inflexible

with each release. This risk becomes more salient in time-boxed delivery scenarios (with

iterations, releases, etc.) where the focus on delivering incremental business value trumps

reflection on overall application architecture and design. Delivery pressures could result

in:

 Patterns without explicit definitions to support effective application

architecture/design

 Uncoordinated pattern selection, resulting in a pattern palette12 lacking in

coherence

These hazards can result in structural and semantic inconsistencies in the code base,

leading to, for example, obscuring the relevant similarities that would naturally bind

modules together. Without compensating mechanisms, entropy may rob a team of

opportunities to realize architectural, design and implementation consistency.

PED Journey

We realized that some patterns carry architectural implications, while others do not.

For example, an INBOUND CONTROLLER contains front-end specific logic and belongs to

the inbound interface layer, whereas a HELPER could “reside” anywhere in the code base.

Therefore, a team pattern palette should be established in concert with the application

architecture.

Based on our experience, teams should strive for a palette robust enough so that

approximately 80% of the concrete application classes correspond to patterns on the

11 Kent Beck, ibid., 20.
12 The metaphor of a pattern “palette” is intended to suggest an adaptive, non-prescriptive approach

to establishing a collection of patterns for use on a particular project.

6

palette. That is, 80% of the classes are structurally consistent with one of the palette

patterns. We refer to this percentage as “pattern coverage.”13

Principle

 {Pattern Palette} When forming a team, reach consensus on a coherent

“pattern palette.” Avoid “freezing” the palette at a particular time, leaving

the conversation open for palette modification as needed.

Pattern selection is a design exercise and should be a team effort. A satisfactory

pattern palette provides “just enough” (and no more) up-front design to promote long-

term flexibility. We submit that all application development teams benefit from

conversations aimed at selecting their own pattern palette from the PED collections, or

from other sources.14 The patterns included in the palette should carry sufficient

structural weight to back a robust architecture and design, and as a whole, represent a

coherent set.

3. Unteamful Pattern Selection

Hazard

When individuals or programming pairs are singularly focused on a user story, the

“tyranny of the urgent” may supplant team deliberation. That is, implementation may be

ad hoc, with or without pattern consciousness.

If team pattern selection conversations do occur, more extroverted or more

influential team members may have their opinions adopted, over the unvoiced objections

of the team’s more introverted members.

A third risk, “groupthink”, can happen when premature convergence on a pattern

palette occurs without adequate thoughtful deliberation. A superficial understanding of

how to apply the patterns in different contexts can result.

In each case, unteamful behavior threatens the establishment of a pattern palette

that is coherent and structurally oriented.

13 See page 8 for elaboration on the principle of Pattern Coverage.
14 PED provides three collections of patterns: Class, User Interface and Method. We are not arguing

for the PED collections, specifically. Our bias is, of course, that PED be consulted as a starting point, but

other collections of patterns may provide additional inspiration for a team selecting its palette.

7

PED Journey

Over the past ten years, we have seen how helpful it has been for a team member to

play the role of informal “pattern champion”—to facilitate conversations focused on

consensus-formation. A related observation: the technical leader on a project team needs

to be supportive of the pattern champion, or assume that role themselves.

These observations prompted the quest for a metaphor that would suggest an

adaptive, non-prescriptive approach to establishing a collection of patterns for use on a

particular project. The metaphor of the artist’s palette seemed particularly suggestive.

Principle

{Culture of Deliberation} Pattern-selection should be well-considered, and

discussions inclusive of all voices on the project team.

The pattern selection conversation is an opportunity to provide the team with a

“psychologically safe” forum early in the project where contrary opinions are welcome. It

also helps establish a culture of inclusion, i.e., the presumption that every team member’s

standpoint has potential value. Anzeneering rejects the assumption that silence is implicit

consent. 15

Collaborative problem-solving spaces have built-in mechanisms for filtering

complexity; by and large, people prefer the simple to the complex.16 The palette that

emerges will tend to include patterns optimized for structural economy. This encourages

developers to remain “on-palette” during coding. Of course, any application will

inevitably encounter customer features requiring “off-palette” solutions. However, in a

well-functioning team, developers are less inclined to diverge from established norms,

including norms concerning what constitutes a simple vs. a complex solution.

4. Inscrutable Code

Hazard

In a global enterprise environment where people are onboarded at project inception

and later released to other teams, a lack of shared experiences is typical, and the

readability of code can vary widely. In addition, the intelligibility of source may suffer

when the code is written for a compiler rather than for other human beings.

15 See “Anzeneering,” retrieved from http://www.industriallogic.com/blog/anzeneering/, July 2, 2014.
16 From the standpoint of Occam’s Razor, the simpler solution is preferable to the complex.

http://www.industriallogic.com/blog/anzeneering/

8

PED Journey

Who is the audience? Increasingly we witness concepts such as global sourcing

impede the co-located ideal represented by Todd’s team. It is no longer imaginable who

may maintain an application in five or ten years, what their native language may be, or

which cultural context shapes their technical and business view. A team adage, such as

“Write Once, Read Many,” is a useful reminder that the shelf life of application code is

often longer than first imagined. It may have many readers beyond the original

development team.

In addition, the technique of "Pattern Encoding," in which an applied pattern is

denoted by suffix, is a convention for enhancing readability. The PED pattern collections

demonstrate using a suffix for this communication.17

Principle

{Software Understandability} When authoring a narrative in Java, imagine a

global reading audience. Such a narrative—your code—will be understood

beyond a pair programmer and immediate project team.

While we appreciate the value of the standard practices often employed to facilitate

understandable code (coding conventions, pair programming, team code reviews, etc.),

these arguably are inadequate for the long-term global readability of enterprise

application code.

5. Tight Coupling

Hazard

Tight coupling is a structural, not a behavioral, hazard. It can take two forms: (a)

individual modules that grow unmanageably large, and (b) multiple integration points

between modules. In both cases, undisciplined emergence contributes to inter-module

dependencies.

PED Journey

In 2009, we were introduced to Alexander von Zitzewitz18 and his taxonomy of

structural metrics (e.g., quantifying cyclic dependencies). This encounter led to the idea

17 For example, the NoteDE class is presumed to implement the Domain Entity pattern based on its

suffix ‘DE.’
18 Alexander is co-founder and managing director of hello2morrow and CEO of the US subsidiary.

9

that application architecture for organizing source code into dependency groupings may

be use-case-agnostic. That is, structure can be analyzed independent of an application

domain.

At the class level, Java code has structural and behavioral (or functional)

characteristics. These two characteristics are often conflated when teams perform TDD.

Said another way, TDD emphasizes behavior, with code coverage as a key metric. In

addition to measuring the extent that JUnit tests cover functional code, we can also

measure the extent of (structural) pattern usage, yielding a pattern coverage metric.

 Beginning in 2006, Todd’s team had begun experimenting with a rudimentary

JUnit-based tool19 while seeking opportunities for independent structural testing.

Principle

{Pattern Coverage} When TDD provides insufficient attention to structure,

focus on pattern coverage as well.

PED’s flexible technology wrapper (jPED)20 includes an innovative mechanism for:

(i) detecting pattern palette occurrences within the source code, (ii) verifying the class

complies with pre-defined structural elements, and (iii) reporting results. These three

steps can be wrapped in a single test method for interrogating an entire code base.

For example, suppose a project has adopted PED’s DOMAIN ENTITY pattern (see the

Appendix for an elaboration of this pattern). Classes implementing the pattern contain a

no-argument constructor (a structural characteristic) and end in the standard suffix ‘DE.’

The test method executes three steps to verify constructor compliance:

1. Interrogate the code base to identify classes ending in ‘DE.’

2. Attempt to instantiate each concrete DE class using its no-argument

constructor.

3. Report whether the attempt was successful (classes without a no-argument

constructor fail step 2).

Notice that none of these steps have a direct relationship to specific application

functions, thus the designation “use-case-agnostic.” The pattern coverage tool iterates

19 This refers to Marvin Toll’s open source TestUtil 2.0 project, circa 2006.
20 A flexible technology wrapper refers to a layer of code abstracting an API for convenience and

reducing duplication. The PED Website (http://pedcentral.com) provides a reference implementation

(jPED).

10

through the classes in the code base and verifies structural compliance for the elements of

each pattern on the team-selected palette. Upon completion, jPED reports summary

metrics such as what percentage of the classes represent themselves as patterns from the

palette (based on suffix) and what percentage do not.

6. Duplicate Code

Hazard

The numerous tools and algorithms available for detection of duplicate—and

wasteful—code attest to the widespread recognition of this hazard.21

Copy-and-paste is perhaps the most obvious practice yielding duplicate code.

Another form of duplication derives from using boilerplate code.22 For example, two or

more occurrences of boilerplate code may perform virtually identical functions while

addressing different user stories. The duplication is sometimes a response to the

demands of a verbosity-inducing Application Programming Interface (API).

PED Journey

We learned early on with Todd’s team that by wrapping the two new (new to our

enterprise) technologies,23 we could realize several benefits, including the reduction of

redundant boilerplate code (along with pattern adoption, learning and usage, and

consistent source code semantics.)

This approach—wrapping preferred technologies’ APIs—has additional virtues

related to software flexibility that were originally unrecognized, but were later explicated

by Michael Feathers.

Wrapping third-party APIs is a best practice. When you wrap a third-party

API, you minimize your dependencies upon it: You can choose to move to a

different library in the future without much penalty. One final advantage of

wrapping is that you aren’t tied to a particular vendor’s API design choices.

You can define an API that you feel comfortable with.24

21 “Sonargraph-Explorer comes with a powerful duplicate code detection algorithm,” retrieved from

https://www.hello2morrow.com/products/sonargraph/explorer, August 9, 2014.
22 “…boilerplate code or boilerplate is the sections of code that have to be included in many places

with little or no alteration.” Retrieved from http://en.wikipedia.org/wiki/Boilerplate_code, August 20, 2014.
23 In this case, Struts and Toplink.
24 Michael Feathers, “Error Handling” in Robert C. Martin, ed., Clean Code (Pearson Education, Inc.,

2009), 109.

https://www.hello2morrow.com/products/sonargraph/explorer

11

Principle

{Flexible Technology Wrapper} When coding to an existing API, consider

whether a further layer of abstraction will reduce waste and thereby

diminish the testing and maintenance burdens.

Team synergy is amplified when a flexible technology wrapper is intentionally

designed to leverage a pattern collection.

7. Lack of Enterprise Scalability

Hazard

Norms governing “teamful” behavior are widely accepted for project teams of

“seven-plus-or-minus-two.” While individuals have one set of commitments as part of

small self-organizing work groups, could they have a different set when they regard

themselves as members of an enterprise team? When conditions require the scaling of

teamful behaviors to 70 ± 20, or even 700 ± 200 developers, a new hazard emerges: that of

divided allegiance.

Anzeneering, as a protection discipline, identifies five constituencies at risk from

hazardous code and made memorable by the acronym MUMPS (Makers, Users,

Managers, Purchasers, Stakeholders). When the use of patterns does not scale well, these

people get hurt.25

PED Journey

The PED journey took place within a broader context. During this period our highly

regarded CEO championed an enterprise appreciation and belief in collaborating as “one

[global] team.”

So how would one extend a pattern foundation, first realized by Todd’s team, to

hundreds of enterprise developers on project teams spread across five continents? How

can we foster the broad adoption of a pattern mindset among dispersed individuals?

Beginning in 2002 with the adoption of Java, there was an initial bias for written English-

language documentation as a way to communicate to the enterprise development

community. After several years we began to contemplate if distributed project teams

25 A further list is embedded within the Hillside Group mission, “to improve the quality of life of

everyone who uses, builds, and encounters software systems—users, developers, managers, owners,

educators, students and society as a whole.” Retrieved from http://www.hillside.net/home/mission-

statement, August 20, 2014.

12

could benefit from a learning example implementation. Such an example could

showcase, among other things, how a flexible technology wrapper could be used.

Others have arrived at similar conclusions.

One of the most requested aids to coming up to speed on DDD [Domain

Driven Design] has been a running example application. Starting from a simple

set of functions and a model … we have built a running application with which

to demonstrate a practical implementation of the building block patterns…. 26

In addition, we came to the realization that expecting modestly skilled developers to

learn via independent study was unrealistic. There appeared to be a need for formal

training which:

 Was initially provided as hands-on, lab-based instructor-led classes,

 Challenged participants to extend the learning example implementation’s

source code to support an additional use case within the same business

domain, and

 Was focused on implementing patterns in enterprise software

These discoveries lead us to our last principle:

Principle

{Enterprise Scalability} Establish a learning example implementation useable

as the centerpiece for formal developer training.

The Java platform languages provide a globally understood mechanism for

communicating specific, contextualized guidance to Java developers. When promoting

enterprise team behaviors with developers, doesn’t it make sense to use their language?

CONCLUSION

PED, like any software engineering refinement, may be subject to both inflated

expectations on the part of developers using it, and under-delivery by those promoting it.

The situations where PED seems least beneficial include:

 A below average team, including a lack of problem-solving skills

26 Domain Driven Design. Retrieved from http://dddsample.sourceforge.net, June 20, 2014.

http://dddsample.sourceforge.net/

13

 A high-performance co-located team that thrives on informal collaboration

On the contrary, the situations where PED seems most beneficial include:

 Teams with communication-challenged members

 Geographically dispersed teams, especially those distributed across time

zones

 Teams with talented younger developers lacking experience with the

complexities of corporate application development

PED does not and cannot compensate for teams with minimal Agile practice skills.

PED can help a team progress beyond basic software engineering into the world of safety

engineering.

14

APPENDIX: COMMUNICATING PATTERNS

‘Seven Habits’ of Highly Effective Single-Class Patterns27

The successful adoption of PED patterns can be ascribed to their shared

characteristics. Patterns are:

i. Scoped to a single class (e.g., INBOUND CONTROLLER), not multiple classes (e.g.,

MVC)

ii. Language-specific, i.e., demonstrated in Java

iii. Relatively few in number to facilitate learning and recollection

iv. Focused on structural elements for simplicity

v. Used daily when coding working software

vi. Readable within source code by class naming convention

vii. Assigned an architectural context (i.e., they play an architectural role)

Communicating Single-Class Patterns

Over the last decade, the approach to communicating patterns has matured.

Currently, the patterns are presented on the Web, with each pattern characterized as

follows:

1. A brief definition of the pattern.

2. An inventory of its structural elements.

3. A class diagram representing a contextualized use of the pattern within

working software.

4. Source code (i.e., links to the Learning Example Implementation (LExI))

illustrating how the pattern is applied. 28

The PED Website currently documents approximately 20 single-class patterns. The

following example pattern is taken from PED Central.

27 PED includes mostly “single class” patterns, that is, patterns whose scope is one class. PED also

addresses UI patterns and method patterns, however these are beyond the scope of this paper.
28 http://patternenabled.com/source/html/.

15

Example: The DOMAIN ENTITY (DE) Pattern

1. Definition

A DOMAIN ENTITY (DE) represents a physical entity with a unique identity.29

2. Structural Elements

 Extends a base DE class (inheritance) such as:

o AuditDE

o UuidDE

 The lastUpdate field is used for both auditing and versioning

 Versioning supports both optimistic locking and cache

refresh

o UuidNoAuditDE

 One DE relates to a second DE typically via composition

 Contains a single field for identity (no composite primary keys)

 Implements two constructors and at least one immutable identity field:

o A no-argument constructor

o A second constructor with the identity parameter

o A ‘getter’ implemented for the identity field with no ‘setter’

 Typically contains field annotations and accessor methods only30

 Implements the equals(), hashcode(), and compareTo() methods

 Satisfies TEMPLATE METHODS as required

29 The PED DE pattern is loosely informed by Eric Evans’ ENTITY: “an object fundamentally defined

not by its attributes, but by a thread of continuity and identity.” See Eric Evans, Domain-Driven Design:

Tackling Complexity in the Heart of Software (Pearson Education, Inc., 2004), 512.
30 Agreeing whether a DE should contain encapsulated behavior (beyond accessor methods) is a

significant concern explicitly settled by an application development team formalizing their own pattern

palette.

16

3. Class Diagram

4. Source Code

This section of each pattern page contains links to relevant source code viewable as

HTML pages.31 DOMAIN ENTITY source can be found at

http://patternenabled.com/architecture/application-tier/shareable/domain-entity-de/.

31 http://patternenabled.com/source/html

